Abstract

The oxidation of linolenic acid (LNA) and soy lecithin was studied by differential scanning calorimetry (DSC) with linear programmed heating rates (non-isothermal mode). The interpretation of the shape of DSC curves is discussed, and it has been concluded that temperatures of the extrapolated start of heat release are the most reliable data for the rapid estimation of the oxidative stability of lipid materials. The Ozawa-Flynn-Wall method was used to calculate the kinetic parameters of the process: for LNA autoxidation the activation energy, Ea, and pre-exponential factor, Z, are 66 +/- 4 kJ/mol and 1.5 x 10(7) s(-1), respectively, and the autoxidation of lecithin is described by Ea = 98 +/- 6 kJ/mol and Z = 9.1 x 10(10) s(-1). Values of Ea and Z can be applied for calculation of the overall first-order rate constant of autoxidation at various temperatures, k(T). For the two studied lipids the comparison of k(T) values shows the inversion of their oxidative stabilities; that is, below 167 degrees C lecithin is more stable than LNA, k(T)lecithin < k(T)LNA, and above that temperature (termed the isokinetic temperature) k(T)lecithin > k(T)LNA. The calculated inversion of oxidative stabilities can be an explanation of similar observations for other pairs of lipids if the results of accelerated tests measured at temperatures above 100 degrees C are compared with the results obtained at temperatures below 100 degrees C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call