Abstract

The detection of corn (maize) crop diseases is traditionally carried out by farmers, based on their experience accumulated over a period of field practice. However, the visual observation may represent a risk of error due to subjective perception. This article presents an approach based on Deep Learning to identify diseases that affect corn crops. A public database with 3,852 images of maize plant leaves was used, dividedinto four classes: healthy corn, exserohilun leaf spot (northern leaf blight), common corn rust (common rust) and cercosporiosis (cercospora leaf/gray leaf). The proposed model used Convolutional Neural Networks (CNN) techniques for image classification. The four experiments indicated results with an average accuracy above 94.5%. These results in the identification and diagnosis of plant diseases can contribute significantly as atool to the improvement of the production chain that affect corn crops. All data are available at https://github.com/npcaufra/classificacao-doencas-milho .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.