Abstract

� A filtration model commonly used to describe removal of colloids during packed-bed filtration in water treatment applications was modified for describing downgradient transport of bacteria in sandy, aquifer sediments. The modified model was applied to the results of a small -scale (7 m), natural-gradient tracer test and to observations of an indigenous bacterial population moving downgradient within a plume of organically contaminated groundwater in Cape Cod, MA. The model reasonably accounted for concentration histories of labeled bacteria appearing at samplers downgradient from the injection well in the tracer experiment and for the observed 0.25-μm increase in average cell length for an unlabeled, indigenous bacterial population, 0.6 km downgradient from the source of the plume. Several uncertainties were apparent in applying filtration theory to problems involving transport of bacteria in groundwater. However, adsorption (attachment) appeared to be a major control of the extent of bacterial movement downgradient, which could be described, in part, by filtration theory. Estimates of the collision efficiency factor, which represents the physicochemical factors that determine adsorption of the bacteria onto the grain surfaces, ranged from 5.4 X 10 -3 to 9.7 X 10 -3 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call