Abstract
CFD modeling has found increasing use in the design and evaluation of utility boiler retrofits, combustion optimization and NOx reduction technologies. This paper reviews two recent examples of CFD modeling used in the design and evaluation of NOx reduction technologies. The first example involves the staging of furnace combustion through use of overfire air (OFA) to reduce NOx emission in a B&W opposed-wall fired pc furnace. Furnace simulations identified locations of highest flue gas mass flows and highest CO concentrations and were used to identify OFA port placement for maximum NOx reduction with lowest increases in unburned carbon in fly ash and CO emission. Simulations predicted a 34% reduction in NOx emission with OFA. The second example summarizes the design and application of RRI with OFA and SNCR in a 138 MW cyclone-fired boiler. Simulations were used to design an aminebased injection system for the staged lower furnace and to evaluate NOx reduction and ammonia slip of the RRI system. Field-testing confirmed modeling predictions and demonstrated that the RRI system alone could achieve 25–30% NOx reduction beyond OFA levels with less than 1 ppm ammonia slip and that RRI in combination with SNCR could achieve 50–55% NOx reduction with less than 5 ppm slip.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have