Abstract

An alkali-activated aluminosilicate geopolymer cement was reinforced with polyether ether ketone-wound carbon fibre layers to improve the mechanical properties of the cement in flexion. Such a material, which is heat resistant and has a low coefficient of thermal expansion, will be of use in the development of out-of-autoclave processing routes for large area composite components. The mechanical and physicochemical properties of both the neat and reinforced cement were examined using Charpy impact and three-point bend testing and Fourier transform infrared spectroscopy. A five-fold improvement in flexural strength was observed for the fibre-reinforced geopolymer samples, while a three-fold improvement was observed in the impact strength. The coefficient of thermal expansion of the composite was determined using dilatometry. A number of different curing cycles were also examined using differential scanning calorimetry. The fibre reinforcement led to flexural strength improvement of up to 5 times as well as increasing the strain to failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.