Abstract

Recent studies show that facial information contained in visual speech can be helpful for the performance enhancement of audio-only blind source separation (BSS) algorithms. Such information is exploited through the statistical characterization of the coherence between the audio and visual speech using, e.g., a Gaussian mixture model (GMM). In this paper, we present three contributions. With the synchronized features, we propose an adapted expectation maximization (AEM) algorithm to model the audio–visual coherence in the off-line training process. To improve the accuracy of this coherence model, we use a frame selection scheme to discard nonstationary features. Then with the coherence maximization technique, we develop a new sorting method to solve the permutation problem in the frequency domain. We test our algorithm on a multimodal speech database composed of different combinations of vowels and consonants. The experimental results show that our proposed algorithm outperforms traditional audio-only BSS, which confirms the benefit of using visual speech to assist in separation of the audio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.