Abstract
This paper proposes an effective Interactive Multiple Model Adaptive Robust Kalman Filter (IMMARKF) without time delay to handle situations where both process modeling errors and measurement modeling errors exist simultaneously. Building upon the robust Centered Error Entropy Kalman Filter (CEEKF) for outlier measurements and the Adaptive Kalman Filter (AKF) for process modeling errors, the IMMARKF method combines the Gaussian optimality of the KF, the adaptability of AKF, and the robustness of CEEKF using the interacting multiple model (IMM) principle to adapt reasonably to changing application environments, and can obtain estimation results in the absence of time delay. Target tracking simulations show that compared to existing methods, the proposed method can better adapt to non-stationary noise and application environments where process anomalies and measurement anomalies occur simultaneously.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.