Abstract

Micro-cracks are one of the types of stone deterioration which can propagate and lead to surface detachments and larger cracks in the long run. The present study developed a sustainable and environmentally friendly infill material-biological mortar (BM), as an alternative to conventional approaches. Using a biomineralization approach, this BM was explicitly designed for healing micro-cracks (less than 2 mm) in historic travertines. To this end, the mortar was prepared using a calcifying Bacillus sp. isolated from thermal spring water resources in Pamukkale Travertines (Denizli), stone powder gathered from travertine quarries in the vicinity, and a triggering solution specifically designed to set off calcium carbonate precipitation reaction. After setup, BM was applied to micro-cracks of artificially aged test stones for testing. Scanning electron microscopy revealed calcium carbonate-coated Bacillus sp. bodies in the BM matrix, optical microscopy showed secondary calcite minerals throughout the BM applied micro-cracks, and stereomicroscopy and nanoindentation analyses demonstrated bonding of BM with stone due to microbial calcification activities. Furthermore, BM and original material contact showed a continuous and coherent structure in all samples. Within this context, BM could be considered a promising and alternative approach for the remediation of micro-cracks of historic stones. KEY POINTS: A binder was produced by the MICP of Bacillus sp. Pamukkale. Physical, mineralogical, and nanomechanical characterization demonstrated microbial calcite precipitates in BM. A significant bond was determined between the grains and matrix of BM due to Bacillus sp. calcite production activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.