Abstract

Ascorbic acid and ascorbate ion (denoted together as ASC) inhibit nitrosation by competing for the nitrosating agents formed from nitrite (e.g. N2O3, NO+ and NOSCN). ASC is oxidized irreversibly by this reaction and the nitrite equivalents are reduced to nitric oxide (NO). In open, aerobic systems the effective stoichiometry of the reaction between ASC and nitrite is not fixed, but is determined by a competition between the physical removal of NO (and NO2) from the system and the oxidation of NO by dissolved O2. The oxidation of NO reconverts it to a nitrosating agent which may react again with the remaining ASC. To determine the conditions under which ASC is most effective as a nitrosation inhibitor, we examined the kinetics of the reactions between nitrite and ASC and between nitrite and proline. These reactions were studied in open shaker flasks as functions of pH, anion composition (SCN- and Cl-), temperature, and gas-liquid mass transfer rate. At lower mass transfer rates, at lower pH and/or in the presence of SCN- or Cl-, relatively more ASC was consumed by a given amount of nitrite. Increased temperature caused more or less ASC to be consumed by a given amount of nitrite, depending on the conditions. A mathematical model of the reactions and mass transfer steps was developed which describes each of these features. The model predicts the variable stoichiometry of the reaction between nitrite and ASC in open, aerobic systems, and clarifies the mechanisms by which ASC inhibits nitrosation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.