Abstract

The key step for nitric oxide (NO) removal using oxidation method is to efficiently oxidize NO. This study developed a novel advanced oxidation process (AOP) of ultraviolet light (UV) catalysis of chlorite (NaClO2) to oxidize NO. The production of nitric dioxide (NO2) and photo-production of chlorine dioxide (ClO2) were suppressed by adding ammonium hydroxide (NH4OH). The NO conversion efficiency was 98.1% using UV/NaClO2-NH4OH. Electron spin resonance (ESR) tests confirmed the roles of hydroxyl radical (HO) and oxychloride radical (ClO/Cl2O2) in the oxidation of NO. Kinetics analyses showed that NO flux was significantly enhanced by radical-induced (HO/ClO) oxidation of NO. In the presence of UV, the overall reaction rates (kov1*) were 3-8 times higher than those without UV. The Hatta number, namely the enhanced factor, was calculated in the range of 229-403 and 730-780 corresponding to without and with UV light, suggesting that NO oxidation belonged to fast and/or instantaneous reaction. Thus, the gas-film mass transfer resistance was the rate-determining step. N-containing product was determined as NH4+ and NO3- according to X-ray photoelectron spectroscopy (XPS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.