Abstract
Alternative copolymers to the well-known Nafion membranes are the styrene/acrylic acid PS/AA) copolymers, which have advantages in cost and availability of raw materials. Previous attempts to improve their mechanical properties involved crosslinking with divinyl benzene, but in this case the use of the tri-functional monomer TMPTMA (trimethylol propane trimethacrylate) is examined. Copolymers with a PS/AA molar ratio of 94/6 were prepared by a free radical polymerization reaction, including TMPTMA at 0.1, 0.01 and 0.001 % mol concentrations. Reactions were followed by percentage yield (gravimetry), Infrared spectroscopy (FTIR) and extent of crosslinking by gel percentage evaluation (soxhlet extraction) with three different solvents (water, tetrahydrofuran and dichloromethane). Thermal transitions were followed by calorimetry (DSC), stability by thermogravimetry (TGA) and mechanical properties by dynamic mechanical analysis (DMA). FTIR spectra show typical bands from the copolymer while the corresponding bands associated with crosslinking are overlapped; however, gel percentage evaluations show a higher level of crosslinking for the 0.1% TMPTMA copolymer and lack of solubility in water. DSC thermograms indicate an increment in the glass transition (Tg) and TGA exhibits a small increment in thermal stability for the crosslinked copolymers. Elastic moduli suggests a rubbery material for TMPTMA crosslinked copolymers while loss modulus confirms a Tg enhancement as observed by DSC. A 0.1 % TMPTMA copolymer does not form a membrane due to its insolubility and infusibility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have