Abstract

Using micro electromechanical systems (MEMS) technologies, the authors have developed the world’s smallest, lightest, and least power-consuming laser Doppler blood flow meter. Unlike commercial fibre-type blood flow instruments, the new blood flow meter is invulnerable to any movements of the person wearing it and has a wireless transmitter. Utilizing the characteristics of the blood flow meter, the authors attempted to detect dehydration by having a subject simply raise an arm (arm-raising test) with the flow meter attached to a fingertip. Healthy young volunteers (20 men and two women, mean age 22.9, age range 21–27 years) were instructed to perspire in a sauna until they became dehydrated. The target dewatering ratio was 2 per cent, which was calculated from the body weight measured using a weight scale. Four markers were compared: mean blood flow (MBF) before arm-raising, MBF during arm-raising, maximum amplitude (MA) of the pulse wave during arm-raising, and inclination of reflex (IR) wave calculated from the recorded blood flow data for the non-dehydrated (before sauna) and dehydrated (3 h after sauna) states in the arm-raising test. Each of the mean total markers (MBF during arm-raising, MA, and IR) was significantly lower ( P < 0.05) during the dehydrated state than the non-dehydrated. These results suggest that three markers could detect dehydration and the blood flow meter devised has the potential to be used as a portable device for detecting dehydration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call