Abstract

In routine monitoring of foods, reduction of analyzed test portion size generally leads to higher sample throughput, less labor, and lower costs of monitoring, but to meet analytical needs, the test portions still need to accurately represent the original bulk samples. With the intent to determine minimal fit-for-purpose sample size, analyses were conducted for up to 93 incurred and added pesticide residues in 10 common fruits and vegetables processed using different sample comminution equipment. The commodities studied consisted of apple, banana, broccoli, celery, grape, green bean, peach, potato, orange, and squash. A Blixer® was used to chop the bulk samples at room temperature, and test portions of 15, 10, 5, 2, and 1g were taken for analysis (n = 4 each). Additionally, 40g subsamples (after freezing) were further comminuted using a cryomill device with liquid nitrogen, and test portions of 5, 2, and 1g were analyzed (n = 4 each). Both low-pressure gas chromatography-tandem mass spectrometry (LPGC-MS/MS) and ultrahigh-performance liquid chromatography (UHPLC)-MS/MS were used for analysis. An empirical approach was followed to isolate and estimate the measurement uncertainty contribution of each step in the overall method by adding quality control spikes prior to each step. Addition of an internal standard during extraction normalized the sample preparation step to 0% error contribution, and coefficients of variation (CVs) were 6-7% for the analytical steps (LC and GC) and 6-9% for the sample processing techniques. In practice, overall CVs averaged 9-11% among the different analytes, commodities, batches, test portion weights, and analytical and sample processing methods. On average, CVs increased up to 4% and bias 8-12% when using 1-2g test portions vs. 10-15g. Graphical abstract Efficient quality control approach to include sample processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.