Abstract
Autism is a common neurodevelopmental disorder that despite its complex etiology, is marked by deficits in prediction that manifest in a variety of domains including social interactions, communication, and movement. The tendency of individuals with autism to focus on predictable schedules and interests that contain patterns and rules highlights the likely involvement of the cerebellum in this disorder. One candidate-autism gene is contact in associated protein 2 (CNTNAP2), and variants in this gene are associated with sensory deficits and anatomical differences. It is unknown, however, whether this gene directly impacts the brain's ability to make and evaluate predictions about future events. The current study was designed to answer this question by training a genetic knockout rat on a rapid speech sound discrimination task. Rats with Cntnap2 knockout (KO) and their littermate wildtype controls (WT) were trained on a validated rapid speech sound discrimination task that contained unpredictable and predictable targets. We found that although both genotype groups learned the task in both unpredictable and predictable conditions, the KO rats responded more often to distractors during training as well as to the target sound during the predictable testing conditions compared to the WT group. There were only minor effects of sex on performance and only in the unpredictable condition. The current results provide preliminary evidence that removal of this candidate-autism gene may interfere with the learning of unpredictable scenarios and enhance reliance on predictability. Future research is needed to probe the neural anatomy and function that drives this effect.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have