Abstract

The line shape of the Si-L2,3 VV Auger spectrum is to a first approximation equal to the sum of the convolution products of the partial local density of states (pLDOS), each weighted by the two electron Auger matrix elements and the escape depth. Semiempirical quantum chemical cluster calculations have been used to calculate the pLDOS of SiOx (x=0, 0.5, 1, 1.5, 2) from which the line shape in the derivative mode [dN(E)/dE] could be obtained by using the angular momentum selection rules of Feibelman et al., neglecting the structure in the radial two electron Auger matrix elements. Within this approximation we were able to interpret peaks in the measured Si-L2,3 VV Auger line shape of the initial oxidized silicon surfaces (100, 111, 110) and the fully oxidized Si(100) in the derivative mode in terms of local chemical bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.