Abstract
This research demonstrates the feasibility of using a non-collinear wave mixing technique to image internal microscale damage throughout the interior volume of a relatively large (28 cm thick) concrete component. By exploiting the underlying mechanics of nonlinear wave mixing, it is possible to mix two incident waves with frequencies low enough to propagate without being scattered by the inherently heterogenous, concrete microstructure, while still being sensitive to damage features with length scales well below these incident wavelengths. For this study, scanning and imaging is accomplished by manually adjusting the locations of the two incident waves, while a knowledge of the wave speeds in concrete plus synchronization identifies the location of the mixing zone—the specific volume of concrete being imaged. The viability of the proposed technique is demonstrated by examining a concrete prism specimen with known, embedded internal microscale damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.