Abstract
Alkali-silica reaction (ASR) is a deleterious reaction in concrete. Significant ASR damage could undermine the durability of concrete structures and may result in reduced service life. Several nondestructive techniques based on ultrasound have been used to assess ASR damage. It has been shown that nonlinear ultrasound is more sensitive to internal stresses as well as to micro-cracks induced by ASR damage. In this investigation, we developed a co-linear wave mixing method for assessing ASR damage in concrete. By mixing two longitudinal waves, a new longitudinal wave with a lower frequency is generated. The amplitude of this new wave is proportional to the acoustic nonlinear parameter β which can then be obtained from the frequency spectrum of the newly generated longitudinal wave. Our experimental results show that (i) the acoustic nonlinearity parameter is closely correlated to ASR damage in concrete, (ii) the nonlinear wave mixing technique developed here is capable of measuring the changes in the acoustic nonlinearity parameter caused by ASR damage, even in its early stages, and (iii) the nonlinear wave mixing method has the potential to identify the different stages of ASR damage and to track the intrinsic characteristics of the ASR damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.