Abstract
Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin2(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (−0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have