Abstract

The operation of the electricity grid can be heavily affected by unexpected meteorological phenomena which generate emergency situations that cause extensive outages. This often has to do with weather-related events. In several places in the world, an electricity network operator is responsible for fairly compensating end-users. In Finland, there are areas where these weather-related impacts are significantly harsher than those in other areas. Based on this and historic data, the applicability and viability of a high-temperature proton-exchange membrane fuel cell (HT-PEMFC) backup power system was studied in order to assess the opportunity for its installation in the affected municipalities and regions. When implemented on a larger scale, from both technoeconomic and social perspectives, such systems have the potential to yield significant benefits. Compared to a diesel generator, the HT-PEMFC produced nearly half of the volume of CO2 and its fuel costs were six times smaller; however, it remains inapplicable to individual detached households.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call