Abstract
The use of artificial neural networks (ANN) in optimizing salicylic acid (SA) determination is presented in this paper. A simple and rapid spectrophotometric method for salicylic acid (SA) determination was carried out based on the complexation of salicylic acid–ferric(III) nitrate, SAFe(III). The SA forms a stable purple complex with ferric(III) nitrate at pH 2.45. The useful dynamic linear range is 0.01–0.35 g/L. It has a maximum absorption at 524 nm and the stability is more than 50 hours. The results were used for artificial neural networks (ANNs) training to optimize data. For training and validation purposes, a back‐propagation (BP) artificial neural network (ANN) was used. The results showed that ANN technique was very effective and useful in broadening the limited dynamic linear response range mentioned to an extensive calibration response (0.01–0.70 g/L). It was found that a network with 22 hidden neurons was highly accurate in predicting the determination of SA. This network scores a summation of squared error (SSE) skill and low average predicted error of 0.0078 and 0.00427 g/L, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.