Abstract
It has been appraised that the world energy spending will more than double by 2050. The global energy depends mostly on fossil fuels at present, while the estimated amount of fossil-fuel deposits goes on decreasing. The greater part of fossil fuels may be exhausted within next hundred years. In view of this situation, the electrochemical and selective conversion process of CO2 to ethylene that can be driven by the electricity derived from renewable energy is attractive, since CO2 can be utilized as an energy carrier regardless of fossil fuel. The developed CO2 conversion process takes place under rather specific conditions involving three-phase (gas/solution/solid) interface, concentrated solution of potassium halide, low pH, and copper or Cu(I) halide-confined metal electrode. Herein, the bases for leading to the augmentation of the efficiency and selectivity in the electrochemical reduction of CO2 to ethylene are discussed in association with the reduction pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.