Abstract

Since late 2013, outbreaks of porcine epidemic diarrhea virus (PEDV) have reemerged in Japan. In the present study, we observed a high detection rate of PEDV, with 72.5 % (148/204) of diarrhea samples (suckling, weaned, and sows) and 88.5 % (77/87) of farms experiencing acute diarrhea found to be positive for PEDV by reverse transcription PCR. Sequencing and phylogenic analyses of the partial spike gene and ORF3 of PEDV demonstrated that all prevailing Japanese PEDV isolates belonged to novel genotypes that differed from previously reported strains and the two PEDV vaccine strains currently being used in Japan. Sequence and phylogenetic analysis revealed prevailing PEDV isolates in Japan had the greatest genetic similarity to US isolates and were not vaccine-related. Unlike vaccine strains, all prevailing field PEDV isolates in Japan were found to have a number of amino acid differences in the neutralizing epitope domain, COE, which may affect antigenicity and vaccine efficacy. The present study indicates recent PEDV isolates may have been introduced into Japan from overseas and highlights the urgent requirement of novel vaccines for controlling PEDV outbreaks in Japan.

Highlights

  • Porcine epidemic diarrhea (PED) is a highly contagious and devastating viral enteric disease characterized by vomiting, acute onset of severe watery diarrhea, and dehydration

  • porcine epidemic diarrhea virus (PEDV) detection A total of 72.5 % (148 of 204) of samples from 77 pig farms (88.5 %) experiencing acute diarrhea in six prefectures were found to be positive for PEDV by RT-PCR

  • To investigate the heterogeneity of the recent Japanese isolates and their genetic relationship with modified live vaccines, in addition to 2 PEDV vaccine strains (P5-V and 96-P4C6) used in Japan, representative isolates were selected for sequencing of the partial S gene and full ORF3 gene

Read more

Summary

Introduction

Porcine epidemic diarrhea (PED) is a highly contagious and devastating viral enteric disease characterized by vomiting, acute onset of severe watery diarrhea, and dehydration. The PEDV genome is approximately 28 Kb in length and is composed of seven open reading frames (ORF) that encode four structural proteins, namely, spike (S), envelope (E), membrane (M), and nucleocapsid (N), and three major non-structural proteins, including replicases 1a and 1b, and ORF3 (Song and Park 2012). ORF3 gene plays a role in encoding an ion channel protein (Wang et al 2012) and it has been suggested to be an important determinant for virulence of this virus (Song and Park 2012). The virulence of PED can be reduced by altering the ORF3 gene through cell culture adaptation (Park et al 2008), and variation in ORF3 was reported to be associated with viral attenuation in the natural host (Song et al 2003).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call