Abstract
Urushiol is recognized as a sustainable coating material with superior properties; however, it faces significant challenges in applications such as petrochemicals and marine engineering due to surface oil contamination. This study aimed to enhance the cleanability of urushiol-based coatings through hydrophilic modification. Polyethylene glycol monooleate (PEGMO) was identified as an appropriate hydrophilic macromonomer and utilized as a modifier to develop a novel urushiol-based coating, termed P(U-PEGMO), via thermal curing. The results indicated that copolymerization occurred between urushiol and PEGMO during the curing process, forming a stable urushiol copolymer with favorable compatibility. The incorporation of PEGMO greatly improved the surface hydrophilicity of the coatings, as evidenced by a reduction in the water contact angle to below 30° when the modifier content reached 30% or higher, demonstrating a high degree of surface hydrophilicity. This enhanced property imparted the modified coating with underwater superoleophobicity and reduced oil adhesion, thereby facilitating the removal of oil. The cleaning performance was evaluated using a simple water rinsing method, after which, less than 2.5 wt% of oil residues remained on the surface of the modified coating. The high hydrophilicity is considered responsible for the coating's easy-cleaning capability. In addition, the modified coatings exhibited improved flexibility and impact resistance, albeit with a slight decrease in hardness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have