Abstract

Urolithin A (UroA) is well-recognized for its anti-oxidative, anti-inflammatory, and immunomodulatory potentials and has been proven to have neuroprotective effects. Nevertheless, the potential of UroA on bupivacaine (BUP)-induced neurotoxicity has never been reported. Using SH-SY5Y cells to establish a cell model, it was revealed that BUP stimulated cell viability reduction, LDH release increase, and suppression of SIRT1-activated PI3K/AKT signaling in SH-SY5Y cells, whereas UroA treatment caused an effective abrogation of the effects of BUP. Besides, SIRT1 overexpression caused an enhancement in the activity of PI3K/AKT signaling in BUP and UroA co-treated cells, indicating that SIRT1 mediated the activity of PI3K/AKT signaling. Moreover, UroA inhibited BUP-induced apoptosis, oxidative stress, and inflammatory responses in SH-SY5Y cells. However, the effects of UroA on BUP-induced neurotoxicity were all abated by inhibiting SIRT1 or PI3K/AKT signaling through EX527 or LY294002. In conclusion, UroA protected SH-SY5Y cells against BUP-induced injuries through PI3K/AKT signaling in a SIRT1-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call