Abstract

Bupivacain, a common local anesthetic, can cause neurotoxicity and permanent neurological disorders. Paeoniflorin has been widely reported as a potential neuroprotective agent in neural injury models. However, the roles and molecular basis of paeoniflorin in bupivacaine-induced neurotoxicity are still undefined. In the current study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect cell viability. Apoptotic rate was measured through double-staining of Annexin V-FITC and propidium iodide on a flow cytometer. Western blot assay was carried out to examine the protein levels of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated-p38 MAPK (p-p38 MAPK), Bcl-2, and Bax. caspase-3 activity was determined using a caspase-3 activity assay kit. We found that paeoniflorin dose-dependently attenuated bupivacaine-induced viability inhibition and apoptosis in SH-SY5Y cells. Moreover, paeoniflorin inhibited bupivacaine-induced activation of p38 MAPK pathway in SH-SY5Y cells. Paeoniflorin alone showed no significant effect on cell viability, apoptosis and p38 MAPK signaling in SH-SY5Y cells. Inhibition of p38 MAPK signaling by SB203580 or small interfering RNA targeting p38 (si-p38) abated bupivacaine-induced viability inhibition and apoptosis in SH-SY5Y cells. In conclusion, paeoniflorin alleviated bupivacaine-induced neurotoxicity in SH-SY5Y cells via suppression of the p38 MAPK pathway, highlighting the potential values of paeoniflorin in relieving bupivacaine-induced neurotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call