Abstract
Background: Triclosan, bisphenol A (BPA), and brominated flame retardants are environmental estrogenic endocrine-disrupting compounds that may influence the prognosis of breast cancer. We examined the urinary concentrations of these compounds and their associations with demographic characteristics and body fatness in a population of women with newly diagnosed breast cancer. Methods: Overnight urine collection and anthropometric measures were obtained from 302 participants. Triclosan, BPA, tetrabromobisphenol A (TBBPA), and tetrabromobenzoic acid (TBBA) concentrations were determined using ultra-performance liquid chromatography–tandem mass spectrometry. Regression analyses were conducted to examine associations of urinary compound concentration with age, menopause, race, ethnicity, educational level, estrogen receptor status, body size, and body composition. Results: Triclosan, BPA, and TBBA were detected in urine samples from 98.3%, 6.0%, and 0.3% of patients, respectively; TBBPA was undetectable. Among patients with quantifiable values, the geometric mean concentrations were 20.74 µg/L (27.04 µg/g creatinine) for triclosan and 0.82 µg/L (1.08 µg/g creatinine) for BPA. Body mass index ≥ 30 vs. <25 kg/m2 was associated with lower creatinine-corrected urinary concentrations of triclosan (−40.00, 95% confidence interval [CI] = −77.19 to −2.81; p = 0.0351). The observed association was predominantly in postmenopausal women (−66.57; 95% CI: −109.18% to −23.96%). Consistent results were found for associations between triclosan levels and fat mass variables. Conclusion: In this study population, women with newly diagnosed breast cancer had triclosan exposure. Assessments of the implications of urinary concentrations of triclosan for women should consider body fatness and menopausal status.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.