Abstract

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant that is persistent in the environment and detected in human serum and breast milk. TBBPA is microbiologically transformed in anaerobic environments to bisphenol A (BPA) and in aerobic environments to TBBPA dimethyl ether (TBBPA DME). Despite the detection of TBBPA DME in the environment, the resulting toxicity is not known. The relative toxicity of TBBPA, BPA and TBBPA DME was determined using embryonic exposure of zebrafish, with BPA and TBBPA DME exhibiting lower potency than TBBPA. TBBPA exposure resulted in 100% mortality at 3 (1.6 mg/L) and 1.5 μM (0.8 mg/L), whereas BPA and TBBPA DME did not result in significant embryonic mortality in comparison to controls. While all three caused edema and hemorrhage, only TBBPA specifically caused decreased heart rate, edema of the trunk, and tail malformations. Matrix metalloproteinase (MMP) expression was measured due to the role of these enzymes in the remodeling of the extracellular matrix during tissue morphogenesis, wound healing and cell migration. MMP-2, -9 and -13 expression increased (2–8-fold) after TBBPA exposure followed by an increase in the degradation of collagen I and gelatin. TBBPA DME exposure resulted in only a slight increase (less than 2-fold) in MMP expression and did not significantly increase enzymatic activity. These data suggest that TBBPA is more potent than BPA or TBBPA DME and indicate that the trunk and tail phenotypes seen after TBBPA exposure could be due in part to alteration of proper MMP expression and activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.