Abstract
The large-conductance calcium-activated potassium channel (BKCa channel) plays critical roles in smooth muscle relaxation. In urinary bladder smooth muscle, BKCa channel activity underlies the maintenance of the resting membrane potential and repolarization of the spontaneous action potential triggering the phasic contraction. To identify novel BKCa channel activators, we screened a library of natural compounds using a cell-based fluorescence assay and a hyperactive mutant BKCa channel (Lee et al., 2013). From 794 natural compounds, kurarinone, a flavanone from Sophora flavescens, strongly potentiated BKCa channels. When treated from the extracellular side, this compound progressively shifted the conductance-voltage relationship of BKCa channels to more negative voltages and increased the maximum conductance in a dose-dependent manner. Whereas kurarinone strongly potentiated the homomeric BKCa channel composed of only the α subunit, its effects were much smaller on heteromeric channels coassembled with auxiliary β subunits. Although the activation kinetics was not altered significantly, the deactivation of BKCa channels was dramatically slowed by kurarinone treatment. At the single-channel level, kurarinone increased the open probability of the BKCa channel without affecting its single-channel conductance. Kurarinone potently relaxed acetylcholine-induced contraction of rat bladder smooth muscle and thus decreased the micturition frequency of rats with overactive bladder symptoms. These results indicate that kurarinone can directly potentiate BKCa channels and demonstrate the therapeutic potentials of kurarinone and its derivatives for developing antioveractive bladder medications and supplements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.