Abstract

Soil microorganisms play an important role in increasing soil fertility and recycling of nutrients within the soil. Different microorganisms including filamentous fungi, yeasts, mycorrhiza, bacteria, cyanobacteria, and actinomycetes possess the urease enzymes. Urease plays a role in soil enrichment through degradation or hydrolysis of organic nitrogen (N). Urea is an important fertilizer and may enter the soil with the excretions of higher animals and through destruction of the nitrogenous bases contained in the nucleic acids of plant and animal tissues. These products increase soil fertility by an urease. Ureolytic production and activity, and fertility of soil are affected by chemical propertes of soil, environmental factors, sources of urea, and soil microorganism. Problems encountered in use of urea as a fertilizer result from its rapid hydrolysis to ammonium carbonate by soil urease activity and the concomitant rise in pH and accumulation of ammonium. These problems include damage to germinating seedlings and young plants and gaseous loss of urea N as ammonia. The technologies and management practices that can be used to improve urea efficiency and reduce losses include coating of granules, soil incorporation, and use of new slow‐release fertilizers by forming sparingly soluble urea‐aldehyde compounds as ureaforms, crotonylidene diurea, isobutylidene diurea or using natural N‐containing compounds such as composted sludges of municipal and animal wastes. The degradative process of the ureolytic microorganims on animal and plant organic N wastes could help to satisfy condition of eliminating excessive wastes and pollution and simultaneously supply plant with available N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.