Abstract

Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO2) and methane (CH4). The total amount of urban GHG emissions, especially for CH4, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]2 project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20th enhancements of up to 4 ppm CO2 and 21 ppb CH4 were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO2 emission flux of 1.39 ± 0.76 t s–1 is in agreement with current inventories, while the CH4 emission flux of 5.20 ± 1.70 kg s–1 is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the global/regional nested chemistry climate model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH4, which are treated differently by the emission inventories. Our work highlights the importance of strong CH4 sources in the vicinity of Berlin and shows, that there is limited understanding of CH4 emissions from urban regions, even for major cities in highly developed countries like Germany. Furthermore, we show that a detailed knowledge of GHG inflow mixing ratios is necessary to suitably estimate emission rates for Berlin.

Highlights

  • Atmospheric mixing ratios of well-known greenhouse gases (GHGs), such as carbon dioxide (CO2) and methane (CH4), have increased by a factor of 1.4 and 2.5, respectively, compared to pre-industrial times (Hartmann et al, 2013)

  • With our study we contribute to the sparse knowledge of GHG emissions from European cities by studying the urban CO2 and CH4 distribution downwind of the German capital Berlin

  • In July 2018 we performed in situ CO2 and CH4 measurements aboard the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Cessna Grand Caravan in the outflow of Berlin to assess the urban GHG emissions from the city

Read more

Summary

Introduction

Atmospheric mixing ratios of well-known greenhouse gases (GHGs), such as carbon dioxide (CO2) and methane (CH4), have increased by a factor of 1.4 and 2.5, respectively, compared to pre-industrial times (Hartmann et al, 2013). These gases contribute substantially to global warming due to the increased absorption of outgoing infrared radiation. The Paris Agreement (UNFCCC, 2015) aims to keep the global temperature rise below 2°C compared to pre-industrial levels.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call