Abstract

Understanding spatio-temporal changes of urban environments is essential for regional and local planning and environmental management. With the rapid changes of Bucharest city in Romania during past decades, green spaces have been fragmented and dispersed causing impairment and dysfunction of these urban elements. The main goal of this study is to address these tasks in synergy with in-situ data and new analytical methods. Spatio- temporal monitoring of urban vegetation land cover changes is important for policy decisions, regulatory actions and subsequent land use activities. This study explored the use of time-series MODIS Terra/Aqua Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Land Surface Temperature (LST) and evapotranspiration (ET) data to provide vegetation change detection information for metropolitan area of Bucharest. Training and validation are based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2002- 2014 was assessed to be of 87%, with a reasonable balance between change commission errors (20.24%), change omission errors (25.65%), and Kappa coefficient of 0.72. Annual change detection rates across the urban/periurban areas over the study period (2002–2014) were estimated at 0.79% per annum in the range of 0.46% (2002) to 0.77% (2014).Vegetation dynamics in urban areas at seasonal and longer timescales reflect large-scale interactions between the terrestrial biosphere and the climate system. Extracted green space areas were further analyzed quantitatively in relation with air quality data and extreme climate events. The results have been analyzed in terms of environmental impacts and future climate trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call