Abstract
The isotopic and elemental distributions of uranium and thorium were examined in a suite of saline ground waters from central Missouri using mass spectrometric techniques. The waters were sampled from natural springs and artesian wells in Mississippian and Ordovician aquifers and have a wide range in salinity (5 to 26 /per thousand/), deltaD (/minus/108 to /minus/45 /per thousand/), and delta/sup 18/O (/minus/14.7 to /minus/6.5 /per thousand/) values. The suite of samples has a large range in /sup 238/U (50 to 200 x 10/sup /minus/12/g/g) and /sup 232/Th (0.3 to 9.1 x 10/sup /minus/12/g/g) concentrations and extremely high /sup 234/U//sup 238/U activity ratios ranging from 2.15 to 16.0. These isotopic compositions represent pronounced uranium-series disequilibrium compared with the value of modern seawater (1.15) or the equilibrium value (1.00). For such /sup 234/U-enriched waters, /sup 234/U//sup 238/U isotope ratios can be determined with a precision of /+-/ 10 /per thousand/ (2sigma) on 10 mL of sample and less than /+-/5 /per thousand/ on 100 mL. In contrast to the large /sup 234/U enrichments, /sup 230/Th//sup 238/U activity ratios in the ground waters are significantly lower than the equilibrium value. The more saline samples have markedly higher /sup 234/U//sup 238/U activity ratios andmore » lower deltaD and delta/sup 18/O values. Unfiltered and filtered (< 0.1 ..mu..m) aliquots of a saline sample have the same isotopic composition and concentration of uranium, indicating uranium essentially occurs entirely as a dissolved species. The filtered/unfiltered concentration ratio for thorium in this sample is 0.29, demonstrating the predominant association of thorium with particulates.« less
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have