Abstract
Dense uranium mononitride (UN) pellets with controlled microstructures and tailored grain size from large-grained to a few microns are synthesized by spark plasma sintering (SPS) combined with high energy ball milling . The impacts of the sintering conditions on fuel microstructure, grain size, physical density, and phase behavior are systematically investigated, and the thermal-mechanical properties and oxidation behavior of the SPS densified UN pellets are characterized. Higher sintering temperatures and longer ball milling durations and thus finer starting UN powders promote sintering and densification , and dense UN pellets above 95% theoretical density can be achieved by SPS at 1873 K for 10 min. UN phase purity is maintained in the SPS-densified pellets sintered at a lower temperature and short duration. A phase heterogeneity with secondary UO 2 or uranium sesquinitride (U 2 N 3 ) occurs for the UN pellets sintered at higher temperatures using finer UN powders. The hardness and fracture toughness of the SPS-densified UN pellets increase with smaller grain sizes and higher densities to 7.9 GPa and 3.5 MPa m 1/2 , respectively. Both small (1–2 μm) and large grain-sized (30–50 µm) UN pellets exhibit good thermal conductivity . Dynamic oxidation testing by a thermogravimetric analyzer in air shows that the onset temperature for oxidation varies with microstructure and phase heterogeneity of the SPS densified UN pellets. Particularly, the smaller-grained (micron-sized) UN pellets containing uranium oxides and U 2 N 3 display lower weight gain and significantly-reduced oxidation kinetics , and full oxidation completes at a temperature above 1173 K when tested with a ramp rate of 10 K/min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.