Abstract

AbstractWe present U–Pb dates from peridotitic pyrope-rich garnet from four mantle xenoliths entrained in a kimberlite from Bultfontein, South Africa. Garnet dates magmatic emplacement due to the high mantle residence temperatures of the source material prior to eruption, which were most likely above the closure temperature for the pyrope U–Pb system. We determine a U–Pb date of 84.0 ± 8.1 Ma for the emplacement of the Bultfontein kimberlite from garnet in our four xenolith samples. The date reproduces previous dates obtained from other mineral-isotope systems (chiefly Rb–Sr in phlogopite). Garnet can be dated despite extremely low concentrations of U (median ∼0.05 μg/g), because concentrations of common Pb are often low or non-detectable. This means that sub-concordant garnets can be dated with moderate precision using very large laser-ablation spots (130 μm) measured by quadrupole inductively coupled plasma – mass spectrometry (LA-Q-ICP-MS). Our strategy demonstrates successful U–Pb dating of a U-poor mineral due to high initial ratios of U to common Pb in some grains, and the wide spread of isotopic compositions of grains on a concordia diagram. In addition, the analytical protocol is not complex and uses widely available analytical methods and strategies. This new methodology has some advantages and disadvantages for dating kimberlite emplacement versus established methods (U-based decay systems in perovskite and zircon, or Rb- or K-based systems in phlogopite). However, this method has unique promise for its potential application to detrital diamond prospecting and, more speculatively, to the dating of pyrope inclusions in diamond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call