Abstract

Abstract It has recently been shown that extreme stratospheric events (ESEs) are followed by surface weather anomalies (for up to 60 days), suggesting that stratospheric variability might be used to extend weather prediction beyond current time scales. In this paper, attention is drawn away from the stratosphere to demonstrate that the originating point of ESEs is located in the troposphere. First, it is shown that anomalously strong eddy heat fluxes at 100 hPa nearly always precede weak vortex events, and conversely, anomalously weak eddy heat fluxes precede strong vortex events, consistent with wave–mean flow interaction theory. This finding clarifies the dynamical nature of ESEs and suggests that a major source of stratospheric variability (and thus predictability) is located in the troposphere below and not in the stratosphere itself. Second, it is shown that the daily time series of eddy heat flux found at 100 hPa and integrated over the prior 40 days, exhibit a remarkably high anticorrelation (−0.8)...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.