Abstract
Using a hydroponics culture system, we monitored morphological, physiological, and molecular changes in Malus prunifolia seedlings when drought conditions induced by 5% polyethylene glycol (PEG) were combined with a low or normal supply of N (0.05 mM or 1 mM NH4NO3, respectively). Under either nutrient level, drought stress negatively inhibited seedling performance, as manifested by reduced photosynthesis and biomass production, decreased accumulations of total N, and inhibited root growth. Concentrations of NO3− and NH4+ and the activities of enzymes involved in N metabolism (nitrate reductase, glutamine synthetase, and glutamate synthase) were also significantly decreased under drought stress. The net influx of NO3− at the surface of the fine roots declined while that of NH4+ rose markedly, suggesting that the latter may play a more important role in improving drought tolerance in M. prunifolia. Consistently, two ammonium transporters (AMT1;2 and AMT4;2) were notably up-regulated in response to drought stress, whereas most genes related to nitrate uptake, reduction, and N metabolism were down-regulated. At the normal N level, PEG-treated plants showed higher values for biomass production, root growth, and N uptake/reduction when compared with plants exposed to the lower N supply. These results suggest that the negative effect of drought stress on M. prunifolia may be alleviated when more nitrogen is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.