Abstract

The viscoelastic flow past a cylinder is a classic benchmark problem that is not completely understood. Using novel 3D holographic particle velocimetry, we report three main discoveries of the elastic instability upstream of a single cylinder in viscoelastic channel flow. First, we observe that upstream vortices initiate at the corner between the cylinder and the wall and grow with increasing flow rate. Second, beyond a critical Weissenberg, the flow upstream becomes unsteady and switches between two bistable configurations, leading to symmetry breaking in the cylinder axis direction that is highly three-dimensional in nature. Lastly, we find that the disturbance of the elastic instability propagates relatively far upstream via an elastic wave, and is weakly correlated with that in the cylinder wake. The wave speed and the extent of the instability increase with Weissenberg number, indicating an absolute instability in viscoelastic fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call