Abstract

Abstract We investigate prolonged engine activities of short gamma-ray bursts (SGRBs), such as extended and/or plateau emissions, as high-energy gamma-ray counterparts to gravitational waves (GWs). Binary neutron-star mergers lead to relativistic jets and merger ejecta with r-process nucleosynthesis, which are observed as SGRBs and kilonovae/macronovae, respectively. Long-term relativistic jets may be launched by the merger remnant as hinted in X-ray light curves of some SGRBs. The prolonged jets may dissipate their kinetic energy within the radius of the cocoon formed by the jet–ejecta interaction. Then the cocoon supplies seed photons to nonthermal electrons accelerated at the dissipation region, causing high-energy gamma-ray production through the inverse Compton scattering process. We numerically calculate high-energy gamma-ray spectra in such a system using a one-zone and steady-state approximation, and show that GeV–TeV gamma-rays are produced with a duration of 102–105 s. They can be detected by Fermi/LAT or CTA as gamma-ray counterparts to GWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call