Abstract

Numerous recent X-ray observations of coronal loops in both active regions and solar flares have shown clearly that elemental abundances vary with time. Over the course of a flare, they have been found to move from coronal values toward photospheric values near the flare peak, before slowly returning to coronal values during the gradual phase. Coronal loop models typically assume that the elemental abundances are fixed, however. In this work, we introduce a time-variable abundance factor into the 0D ebtel++ code that models the changes due to chromospheric evaporation in order to understand how this affects coronal loop cooling. We find that for strong heating events (≳1 erg s−1 cm−3), the abundances quickly tend towards photospheric values. For smaller heating rates, the abundances fall somewhere between coronal and photospheric values, causing the loop to cool more quickly than the time-fixed photospheric cases (typical flare simulations) and more slowly than time-fixed coronal cases (typical AR simulations). This suggests heating rates in quiescent AR loops no larger than ≈0.1 erg s−1 cm−3 to be consistent with recent measurements of abundance factors f ≳ 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.