Abstract

Dispersive tracer released in a unidirectional velocity field belonging to a stratified porous of finite height describes a transition, called relaxation, from a convective dominated behaviour for short times to Fickian behaviour for asymptotic long times. The temporal relaxation state of the tracer is controlled by the transverse mixing term. In most practical applications, the orders of the time and length scales of the relaxation mechanism are such that in an upscaled model of a stratified medium the dispersive flux is in a pre-asymptotic state. Explicit modelling of the relaxation of the dispersive flux in the pre-asymptotic region is required to improve the accuracy. This paper derives a pre-asymptotic one-dimensional upscaled model for the transverse averaged tracer concentration. The model generalises Taylor dispersion (Proc. R. Soc. London 219, 186–203 (1953)) and extends the method of Camacho (Phys. Rev. E 47(2), 1049–1053 (1993a); Phys. Rev. E 48 (1993b)) to dispersion tensors that may vary as function of the transverse direction. In the averaging step, the governing two-dimensional equation is first spectrally decomposed in terms of the eigenfunctions of the transverse mixing term. Next, the resulting modal relaxation equations are combined into an effective relaxation equation for the extended dispersive Taylor flux. Contrary to the one-dimensional Fickian approach, the upscaled model approximates the multi-scale relaxation behaviour as a single scale relaxation process and accounts for the partial reversibility of convective dispersion upon reversal of the flow direction. The upscaled model is evaluated against the original two-dimensional model by means of moment analysis. The longitudinal tracer variance predicted by our model is quantitatively correct in the short and long time limits and is qualitatively correct for intermediate times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.