Abstract
Dispersion in porous media is of great importance in many areas of science and engineering. While dispersion in porous media has been generally well discussed in the literature, little work has been done regarding a generalization of Taylor dispersion in stratified media. In this work, we generalized the Taylor dispersion theory and Stokes flow in porous media to derive a reduced-order model for tracer dispersion in stratified porous media. Our findings revealed that for a simple case of two-layer porous media, the hydrodynamic coupling between the two layers leads to the tensorial nature of dispersion and advection. The results showed that the obtained dispersion tensor and advection are not symmetric unless both porous layers have similar thickness, porosity, and molecular diffusion. We found that the main elements of the coefficient of the dispersion tensor remain positive while the off-diagonal elements can take negative values. On the contrary, all elements of the advection matrix may take negative values. On the basis of these observations, we report the manifestation of the dispersion barrier, uphill dispersion and advection, and osmotic dispersion during tracer transport in stratified porous media. In particular, the identified uphill advection reveals that the injected tracer in one layer could be transported countercurrent to the adjacent layer. Furthermore, we have shown that in the limiting case of Darcy flow, the Taylor dispersion is absent, and the tracer mixing between the two layers is restricted to the cross-diffusive flux between them. The results revealed that the field scale mixing may not necessarily originate from the Taylor dispersion and could be due to the modified advection terms and the cross-diffusive flux between the two layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.