Abstract

Vascular remodeling caused by extracellular matrix (ECM) metabolism contributes to the development of cerebral vasospasm after subarachnoid hemorrhage (SAH). The balance between tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) plays an important role in ECM remodeling. We investigated the mechanism of vascular remodeling following cerebral vasospasm in a rabbit double hemorrhage model. Rabbit basilar arteries were harvested on days 3, 5, and 7 after initial hemorrhage. TIMP-1, TIMP-2, MMP-2, and MMP-9 mRNA and protein expression were investigated with microarray analysis, quantitative real-time PCR, immunoblot analysis, and enzyme-linked immunosorbent assay (ELISA). The expression and localization of TIMP-1, TIMP-2, MMP-2, MMP-9, elastin, fibronectin, laminin, and collagens I, III, and IV were investigated with immuohistochemical staining. After SAH, TIMP-1 mRNA and protein expression were significantly increased on day 3 and then decreased to the control level on days 5 and 7. MMP-9 protein expression was significantly increased on day 7. TIMP-2 and MMP-2 mRNA and protein expression were significantly increased on day 7. Elastin, fibronectin, laminin, and collagens I, III, and IV protein expression was decreased on day 3 and then restored to control levels on day 7. Upregulation of TIMP-1 during the early phase of cerebral vasospasm may contribute to the recovery of the ECM during the late phase of cerebral vasospasm, resulting in a protective role of TIMP-1 from cerebral vasospasm. Moreover, the increase in arterial compliance by the decrease in ECM during the early phase of cerebral vasospasm may facilitate vasoconstriction of the cerebral artery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.