Abstract

BackgroundMechanical strain plays a significant role in the regulation of bone matrix turnover, which is mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1. However, little is known about the correlation between mechanical strain and osteoblastic cell activities, including extracellular matrix (ECM) metabolism. Herein, we determined the effect of different magnitudes of cyclic tensile strain (0%, 6%, 12%, and 18%) on MMP-13 and TIMP-1 mRNA and protein expression in MC3T3-E1 osteoblasts. Furthermore, we employed specific inhibitors to examine the role of distinct signal transduction pathways known to mediate cellular responses to mechanical strain.ResultsWe identified a magnitude-dependent increase in MMP-13 and TIMP-1 mRNA and protein levels in response to mechanical strains corresponding to 6%, 12%, and 18% elongation. The strain-induced increases in MMP-13 and TIMP-1 mRNA expression were inhibited by PD098059 and cycloheximide, respectively.ConclusionsOur results suggest a mechanism for the regulation of bone matrix metabolism mediated by the differential expression of MMP-13 and TIMP-1 in response to increasing magnitudes of mechanical strain.

Highlights

  • Mechanical strain plays a significant role in the regulation of bone matrix turnover, which is mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1

  • Our results suggest a mechanism for the regulation of bone matrix metabolism mediated by the differential expression of MMP-13 and TIMP-1 in response to increasing magnitudes of mechanical strain

  • This remodeling process requires a complex turnover of the bone extracellular matrix, which is mediated in part by matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) [4,5,6,7]

Read more

Summary

Introduction

Mechanical strain plays a significant role in the regulation of bone matrix turnover, which is mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1. We determined the effect of different magnitudes of cyclic tensile strain (0%, 6%, 12%, and 18%) on MMP-13 and TIMP-1 mRNA and protein expression in MC3T3-E1 osteoblasts. Active remodeling of alveolar bone must occur in order to cope with orthodontic force and mechanical loading generated during orthodontic tooth movement. This remodeling process requires a complex turnover of the bone extracellular matrix, which is mediated in part by matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) [4,5,6,7].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call