Abstract

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype which accounts for 15%-20% of all breast cancer cases. The management of TNBC has remained a challenge due to its lack of targeted therapy. Previously, we reported that homeobox C8 (HOXC8) was involved in metastasis and migration of breast cancer cells. By chromatin immunoprecipitation and luciferase assays, we found that HOXC8 functioned as a transcription factor to activate the transcription of matrix Gla protein (MGP) gene, leading to an increase in the proliferation, anchorage-independent growth, and migration of TNBC cells. We further demonstrated that MGP expression promoted the epithelial-mesenchymal transition (EMT) process of TNBC cells, but not the other subtypes of breast cancer, suggesting that MGP induced EMT to promote proliferation and migration of TNBC cells. Moreover, we found that MGP was upregulated in clinical breast specimens compared to normal breast tissues and high MGP expression was statistically associated with poor, relapse-free survival for TNBC patients, indicating that MGP is probably a novel biomarker or therapeutic target for TNBC patients. Together, our results showed that the HOXC8-MGP axis played an important role in the tumorigenesis of TNBC and might be a promising therapeutic target for TNBC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call