Abstract
Donor T-lymphocytes are effective adoptive immunotherapy in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), but life threatening complications related to GVHD limits its clinical application. Recent advancement in the field of immunotherapy has directed our interest to enhancing the anti-tumor response of donor T cells by modulating expression of checkpoint blockade molecules including programmed death-1 (PD-1), cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and foxp3, the transcription factor associated with regulatory T cells. The two ligands of PD-1, PD-L1 or PD-L2 are highly expressed in the presence of inflammatory signal induced by infection or cancer and PD-1/PD-L1 interaction negatively regulates T-cell antigen receptor (TCR) signaling and dampen T cell cytotoxic activity. Herein, we studied the role of PD-1, CTLA-4 and transcription factor foxp3 expressing donor CD4+ and CD8+ T cells in the development of GVHD.Methods: We have used two established allo-HSCT murine GvHD models. Lethally irradiated wild type (WT) B6, PD-L1 knock out (KO) B6 and PD-L2 KO B6 mice were transplanted with 2 x 106 splenic T cells and 2 x 106 T cell depleted bone marrow (TCD BM) cells from H-2Kdonors. Lethally irradiated CB6F1 recipients were similarly transplanted with splenocytes and TCD BM cells from B6 donors. Acute GvHD scores were determined by combining scores obtained from histological tissue sections and weight-loss, posture, activity, fur texture and skin integrity following standard published procedures. The activation status of donor T-cells and BM and host-derived non-T cells in GvHD target organs was analyzed by flow cytometry. Data from allo-HSCT recipients were compared with the respective data obtained from B6 à B6 syngenic HSCT (syn-HSCT) recipients. Serum cytokines were determined by Luminex assay.Results: PD-L1 KO B6 allo-HSCT recipients had significantly increased acute GvHD scores compared with WT B6 allo-HSCT recipients (p<0.0005) and B6 PD-L2 KO allo-HSCT recipients (p<0.0005) measured on day 8 after transplant. All PD-L1 KO allo-HSCT recipients died within 10 days post transplant while WT B6 and PD-L2 KO allo-HSCT recipients had 20% mortality until 36 days post transplant. Increased acute GvHD was associated with increased amount of serum inflammatory cytokines and increased numbers of activated PD-1+CD69+CD4+ donor T cells. Interestingly, PD-1 expression on donor CD4+ T cells significantly increased in the spleen of transplant recipients but not in BM, while PD-1 expression was significantly increased on donor CD8+ T cells in both spleen and BM compartments of allo-HSCT recipients compared with the syn-HSCT recipients. CTLA-4 expression on CD4+ and CD8+ donor T cells were significantly increased in spleen in the first two weeks post transplant but decreased at later time points compared with syn-HSCT. Again, CTLA-4 expression on CD4+ donor T cells in the BM remained significantly higher measured on 100+ days post transplant in allo-HSCT recipients compared with the syn-HSCT but similar levels of CTLA-4 expression on CD8+ T cells were measured in BM between these two HSCT recipients. Foxp3 expression on donor T cells and the numbers of CD4+CD25+foxp3+ regulatory T (Tregs) were markedly suppressed in donor T cells on day 4 post HSCT of allo-HSCT recipients compared with the syn-HSCT recipients. Although total numbers of donor T cells in the spleen of allo-HSCT recipients remained low over time, the percentage of PD-L1-expressing donor T cells in spleen were significantly higher (p<0.005) at early time points (day 4) in allo-HSCT recipients compared with the syn-HSCT. While total numbers of host-derived cells in spleen decreased over time in mice that developed GvHD, host-derived PD-L1 expressing CD3+ T cells persisted at higher levels through day 36 post transplant. Additionally, PD-L1 expression was also increased in donor BM-derived T cells and non-T cells populations over time.Collectively, these data indicate that severe GvHD occurs in allo-HSCT recipients in spite of increased numbers of PD-1, CTLA-4 and PD-L1 expressing donor and host cells. The occurrence of severe GvHD in these allo-HSCT models systems was associated with markedly reduced levels of CTLA-4 and foxp3 transcription factor expressing Tregs indicating that these pathways may be more relevant to controlling GvHD than PD-1:PD-L1 expression. DisclosuresNo relevant conflicts of interest to declare.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have