Abstract
High-fat-fed C57Bl/6J FABP4/aP2 null mice develop obesity but not the related hyperglycemia or hyperinsulinemia characteristic of type II diabetes. FABP4/aP2 protein's function to bind fatty acids in the adipocytes may promote total body energy homeostasis by linking energy depots to the ability to express signaling molecules similar to leptin. To test this hypothesis, proteomic analysis of serum proteins from high-fat-fed wild-type and FABP4/aP2 null mice revealed that the GDF-3/Vgr-2 protein, a bone morphogenetic protein, was upregulated in C57Bl/6J FABP4/aP2 null mice. The increase in serum GDF-3/Vgr-2 protein was correlated with a 27-fold increase in adipose GDF-3/Vgr-2 mRNA. In contrast, leptin expression was unaltered between FABP4/aP2 null and wild-type animals. The expression of GDF-3/Vgr-2 mRNA was not substantially different in adipose tissue of db/db and tb/tb mice compared to wild-type controls. The expression of GDF-3/Vgr-2 mRNA was dependent upon the age and diet of the animals, declining as a function of age in high-fat-fed wild-type animals while increasing in the FABP4/aP2 null strain. These results identify GDF-3/Vgr-2 as an age- and fat-regulated, adipose-derived cytokine suggesting a linkage between adipocyte fatty acid metabolism and the expression of the bone morphogenetic family of differentiation regulators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have