Abstract

Frailty is an important geriatric syndrome that predicts disability and mortality. Substantial evidence suggests inflammation marked by elevated IL-6 levels as a key pathophysiologic factor that contributes to frailty. CXCL-10, a potent pro-inflammatory chemokine, has increased levels with age and is implicated in several inflammatory conditions. To better understand molecular mechanisms of inflammation activation in frailty, we evaluated monocytic expression of CXCL-10 and other inflammatory pathway genes by pathway-specific gene array analysis and quantitative RT-PCR. Frailty status was determined by the validated criteria. Sixteen pairs of community-dwelling frail and age-, race-, and sex-matched non-frail participants (mean age 83 years, range 72–94) completed the study. Here we report that frail participants had higher CXCL-10 expression levels than matched non-frail controls (1.05 ± 0.88 versus 0.53 ± 0.39, p = 0.04). CXCL-10 expression correlated with IL-6 levels only in frail participants (Spearman correlation coefficient r = 0.52, p = 0.03). Furthermore, frailty-associated CXCL-10 upregulation was highly correlated with IL-6 elevation, both measured by frail-over-non-frail ratios ( r = 0.93, p < 0.0001). These findings suggest upregulated monocytic expression of CXCL-10 as an important molecular mechanism that contributes to inflammation activation in frail older adults. Therapeutic implications include potential development of CXCL-10-based interventional strategies for the prevention and treatment of frailty in older adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call