Abstract
Over half a century of exploration and development drilling has shown that hydrocarbons reservoired in Upper Permian (Guadalupian) deposits of west Texas and southeastern New Mexico have accumulated at the contact between shelf-lagoon dolomites or siltstones and their updip coastal evaporite equivalents. Production from any of the Guadalupian shelf units similarly occurs from stacked reservoirs of dolomites or siltstones. Dolomites comprise shoaling cycles of deposition: intercrystalline and moldic porosities typify basal dolomudstones and dolowackestones as well as overlying dolopackstones, whereas capping dolomudstones may contain fenestral porosity but usually are tight and interlayered with anhydrite. Interparticle porosity occurs in siltstones that are interbedded with the dolomites. Reservoir development is more a problem of updip seal than porosity, as sediments other than lagoonal dolomites and siltstones are porous. Porous carbonate sands accumulated in a backreef position and the shelf margin reef and associated slope debris apron have developed porosity secondarily through solution, fracturing, and minor dolomitization. Hydrocarbons migrated from presumed basinal source rocks through the margin and backreef, and continued updip into shelf lagoon deposits that pinch out into tight anhydrite-cemented equivalents as well as interbedded evaporites of coastal tidal-flat origin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have