Abstract

Abstract The major tributary of the lower Colorado River, the Gila River, is a critical source of water for human and natural environments in the southwestern United States. Warmer and drier than the upper Colorado River basin, with less snow and a bimodal precipitation regime, the Gila River is controlled by a set of climatic conditions that is different from the controls on upper Colorado River flow. Unlike the Colorado River at Lees Ferry in Arizona, the upper Gila River and major Gila River tributaries, the Salt and Verde Rivers, do not yet reflect significant declines in annual streamflow, despite warming trends. Annual streamflow is dominated by cool-season precipitation, but the monsoon influence is discernable as well, variable across the basin and complicated by an inverse relationship with cool-season precipitation in the Salt and Verde River basins. Major multiyear streamflow droughts in these two basins have frequently been accompanied by wet monsoons, suggesting that monsoon precipitation may partially offset the impacts of a dry cool season. While statistically significant trends in annual streamflow are not evident, decreases in autumn and spring streamflow reflect warming temperatures and some decreases in spring precipitation. Because climatic controls vary with topography and the influence of the monsoon, the impact of warming on streamflow in the three subbasins is somewhat variable. However, given relationships between climate and streamflow, current trends in hydroclimate, and projections for the future, it would be prudent to expect declines in Gila River water supplies in the coming decades. Significance Statement This research investigates the climatic controls on the Gila River and its major tributaries, the Verde and Salt Rivers, to gain insights on how trends in climate may impact future water supply. The Gila River is the major tributary of the lower Colorado River, but, unlike the situation for the upper Colorado River, no significant decreasing trends in annual streamflow are evident despite warming temperatures. Climate–streamflow relationships are more complex in this part of the Colorado River basin, and several factors may be buffering streamflow to the impact of warming. However, given the key climatic controls on streamflow, current and emerging trends in climate, and projections for the future, declines in streamflow should be expected in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call