Abstract

Rigorous upper bounds on the viscous dissipation rate are identified for two commonly studied precessing fluid-filled configurations: an oblate spheroid and a long cylinder. The latter represents an interesting new application of the upper-bounding techniques developed by Howard and Busse. A novel ‘background’ method recently introduced by Doering & Constantin is also used to deduce in both instances an upper bound which is independent of the fluid's viscosity and the forcing precession rate. Experimental data provide some evidence that the observed viscous dissipation rate mirrors this behaviour at sufficiently high precessional forcing. Implications are then discussed for the Earth's precessional response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call